NilaiModus Dari Data Pada Tabel Histogram Berikut Adalah . Kuartil ketiga dari data yang disajikan dalam histogram berikut adalah. Nilai modus dari data yang disajikan dalam histogram berikut adalah. 14 8 12 4 swww 150.5 1555 1605 1655 1705 1755. Contohnya dapat dilihat pada artikel mean, median, dan modus ya sobat.
Modusdata pada tabel tersebut adalah 51,83. Untuk menentukan kelas modus, kita lihat kelas dengan frekuensi terbesar. Rumus modus untuk data berkelompok adalah Mo = tb + × p dengan tb = tepi bawah kelas modus d₁ = selisih frekuensi kelas modus dengan frekuensi kelas sebelumnya d₂ = selisih frekuensi kelas modus dengan frekuensi kelas setelahnya p = panjang kelas Pembahasan
Modusdari data Kelompok dengan Tabel Distribusi Frekuensi. Tabel distribusi frekuensi juga yaitu termasuk dalam data kelompok. Hanya saja, pada tabel tersebut nilai data dituliskan dalam bentuk range tertentu yang disebut dengan interval atau kelas. Meskipun demikian, nilai modus untuk data kelompok tersebut dirumuskan: Keterangan: Mp = modus
jikamelihat soal seperti ini maka cara pengerjaannya menggunakan rumus modus = p b ditambah D1 parade 1 + 2 * p t b adalah tepi bawah kelas modus D1 adalah frekuensi kelas V dan kelas sebelumnya D2 adalah selisih frekuensi kelas modus dan kelas sesudahnya HP adalah panjang kelas berarti kita cari dulu kelas modusnya pada tahun ini kelas modus adalah kelas dengan frekuensi terbanyak di kelasnya yang ini dengan frekuensinya 30 kita dapat mencari tepi bawah kelas nya adalah kecil dari interval
Jawabanyang benar untuk pertanyaan tersebut adalah D. Ingat! Modus adalah nilai data yang paling sering muncul atau data yang frekuensi terbesar dan dinotasikan . Nilai yang memiliki frekuensi terbesar dari data tersebut adalah dengan frekuensi 6 maka modus dari data tersebut adalah 7. Oleh karena itu, jawaban yang benar adalah D.
Modusdari data pada tabel di atas adalah. Jawaban paling sesuai dengan pertanyaan Perhatikan tabel berikut. Modus dari data pada tabel di atas adalah
. Kelas 12 SMAStatistika WajibModusModus dari data pada tabel berikut adalah . . . . Interval Frekuensi 61 - 65 8 66 - 70 12 71 - 75 18 76 - 80 14ModusStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0208Data nilai siswa hasil ulangan matematika disajikan dalam...0225Cermati tabel distribusi frekuensi berikut. Nilai f 7-12 ...0336Diketahui nilai ulangan matematika siswa Nilai 3 4 5 6 7 ...0202Modus dari data pada distribusi frekuensi di samping adal...Teks videodisini kita memiliki pertanyaan statistika data berkelompok pada pertanyaan kali ini kita akan ditanyakan mengenai modus pada data berkelompok maka Sebelumnya kita akan mencari tahu apa itu modus dan Apa itu rumus dari modus modus itu adalah nilai yang paling sering muncul pada suatu data dan kita dapat cari pada data berkelompok dengan rumus titik bawah kelas modus ditambah dengan 1 dibagi b 1 + b 2 * P nilai b 1 ini adalah kelas modus dengan kelas sebelumnya sedangkan B2 adalah Selisih dari kelas modus dengan kelas sesudah ya sedangkan P itu adalah panjang dari kelas yang ada di data berkelompok disebutNah maka pertama-tama kita akan mencari nilai P dulu. Nah nilai P kita dapat cari dengan memilih kelas mana saja lalu kita akan mencarinya saya akan mencoba dengan kelas yang pertama maka nilainya adalah 65 kurangi 61 ditambah 16 maka kita akan mendapat nilai phi-nya = 5. Jika kamu mencoba dengan nilai mencari nilai P di kelas lain hasilnya pasti akan sama karena pada data berkelompok interval kelasnya itu sama Nah selanjutnya kita mencari nilai 1 dan juga B2 karena kita ketahui kelas dengan frekuensi terbanyak atau kelas modus itu adalah di sini maka B1 adalah kelas sebelumnya dan kelas yang disini maka Selisih dari 12 dan 18 yaitu 6Sedangkan B2 adalah selisih 18 dengan kelas sebelumnya yang di sini adalah 14 maka B 2 nya adalah 18 kurangi 14 jadi 4. Nah, sekarang kita sudah mengetahui B1 B2 dan P tinggal mengetahui titik bawah. Nah untuk mengetahui titik bawah ini kita tinggal melihat batas bawah dari interval kelas Lalu kita kurangi dengan setengah maka nilai titik bawahnya adalah 71 kurangi 0,5 menjadi 70,5. Nah kita tinggal menaruh. Apa saja yang kita sudah ketahui di sini ke dalam rumusnya maka modus sama dengan titik bawahnya itu 70,5 ditambah B satunya itu adalah 6 lalu 6 + 4 x dengan Y nya yaitu 5 Nah kita Sederhanakan menjadi 6 / 10 * 5ini kita akan coret dengan angka 10 menjadi 2 dan 2 akan kita coret dengan angka 6 di atasnya dan angka namanya menjadi 3 maka 70,5 ditambah 3 menjadi 73,5 dan jawabannya adalah C sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
PembahasanJawaban yang benar untuk pertanyaan tersebut adalah D. Ingat! Modus adalah nilai data yang paling sering muncul atau data yang frekuensi terbesar dan dinotasikan M o . Nilai yang memiliki frekuensi terbesar dari data tersebut adalah 7 dengan frekuensi 6 maka modus dari data tersebut adalah 7. Oleh karena itu, jawaban yang benar adalah yang benar untuk pertanyaan tersebut adalah D. Ingat! Modus adalah nilai data yang paling sering muncul atau data yang frekuensi terbesar dan dinotasikan . Nilai yang memiliki frekuensi terbesar dari data tersebut adalah dengan frekuensi 6 maka modus dari data tersebut adalah 7. Oleh karena itu, jawaban yang benar adalah D.
Kelas 12 SMAStatistika WajibModusModus dari data pada tabel di bawah ini adalah ... Nilai Frekuensi 1-10 10 11-20 12 21-30 18 31-40 30 41-50 16 51-60 14 Jumlah 100ModusStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0208Data nilai siswa hasil ulangan matematika disajikan dalam...0225Cermati tabel distribusi frekuensi berikut. Nilai f 7-12 ...0336Diketahui nilai ulangan matematika siswa Nilai 3 4 5 6 7 ...0202Modus dari data pada distribusi frekuensi di samping adal...Teks videojika melihat soal seperti ini maka cara pengerjaannya menggunakan rumus modus = p b ditambah D1 parade 1 + 2 * p t b adalah tepi bawah kelas modus D1 adalah frekuensi kelas V dan kelas sebelumnya D2 adalah selisih frekuensi kelas modus dan kelas sesudahnya HP adalah panjang kelas berarti kita cari dulu kelas modusnya pada tahun ini kelas modus adalah kelas dengan frekuensi terbanyak di kelasnya yang ini dengan frekuensinya 30 kita dapat mencari tepi bawah kelas nya adalah kecil dari interval kelasnya yaitu 3 per 1 dikurang 0,5 hasilnya 30,5 dan kita juga dapat mencari nilai D1kelas modus itu 30 dikurang frekuensi kelas sebelumnya 18 d 1 = 30 dikurang 18 hasilnya 12 kita juga dapat mencari D2 yaitu frekuensi kelas modus 30 dikurang frekuensi kelas sesudahnya 16 dan D2 = 30 dikurang 16 hasilnya 14 dan kita juga dapat mencari panjang kelas nya yaitu P dengan memperhatikan salah satu interval pada kelas modus yaitu panjang kelas nya yaitu 40 dikurang 31 ditambah 1 sama dengan 10 sekarang saya dapat menghitung nilai modusnya sama dengan tepi bawah kelas modus itu 30,5 ditambah D1dibagi 1 + C2 12 + 14 x panjang alasnya 10 berarti hasilnya 3,5 + 120 per 26 hasilnya = 30,5 + 4,62 hasilnya sama dengan 35 koma 12 berarti jawaban untuk soal ini adalah yang berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Hai Quipperian, sudah belajarkah kamu hari ini? Bagaimana kamu menghabiskan hari-harimu saat di rumah? Pernah enggak sih kamu kesal karena nilai rata-ratamu berada di bawah nilai rata-rata kelas? Jika nilai rata-ratamu masih berada di bawah nilai rata-rata kelas, tampaknya kamu masih harus belajar lebih giat agar bisa menembus peringkat 1. Mungkin kamu bertanya-tanya, memangnya apa hubungan antara nilai rata-rata kelas dan peringkat 1? Umumnya, seseorang yang mendapatkan peringkat 1 di kelas, sudah pasti nilainya berada di atas nilai rata-rata kelas. Membahas nilai rata-rata, bagaimana sih cara menghitung nilai rata-rata itu? Ingin tahu selengkapnya? Check this out! Ukuran Pemusatan Data Sebelum membahas lebih lanjut tentang mean, modus, median, kamu harus tahu dulu apa itu ukuran pemusatan data. Ukuran pemusatan data adalah metode deskriptif yang menunjukkan pusat suatu data atau perwakilan suatu data. Ukuran pemusatan data yang umum kamu kenal ada tiga, yaitu mean, modus, dan median. Apa perbedaan ketiganya? Mean Rata-Rata Mean atau istilah lainnya nilai rata-rata adalah jumlah keseluruhan data dibagi banyaknya data datum. Nilai rata-rata dibagi lagi menjadi empat, yaitu sebagai berikut. 1. Rata-rata data tunggal Data tunggal adalah data yang belum dikelompokkan dalam kelas-kelas interval. Contoh data tunggal adalah 2, 3, 5, 9, 7, 7, 5, 5, …, n. Secara matematis, rata-rata data tunggal bisa dinyatakan sebagai berikut. 2. Rata-rata untuk data berfrekuensi Sampel yang banyak tentu akan menghasilkan data yang cukup besar. Tak jarang, banyak data yang akan berulang. Untuk memudahkan analisis, data harus dikelompokkan dalam tabel distribusi seperti berikut. Untuk jumlah data dan ukuran sampelnya, bisa dinyatakan sebagai berikut. Dengan demikian, rumus rata-rata data berfrekuensi dinyatakan sebagai berikut. Perhatikan contoh soal berikut. Contoh Soal 1 Berikut ini merupakan tabel yang menunjukkan usia 20 anak di kota A tepat 2 tahun lalu. Jika pada tahun itu tiga anak yang usianya 7 tahun dan seorang anak yang usianya 8 tahun pindah ke kota A, tentukan usia rata-rata 16 anak yang masih tinggal pada saat ini! Pembahasan Oleh karena data itu diambil pada 2 tahun lalu, maka usia setiap anak saat ini bertambah 2 tahun. Perhatikan tabel berikut. Tabel 2 tahun lalu Tabel saat ini Rata-rata usia 16 anak yang masih tinggal di dalam kota saat ini dirumuskan sebagai berikut. Jadi, usia rata-rata 16 anak yang masih tinggal pada saat ini adalah 8,5 tahun. 3. Rata-rata berinterval Rata-rata berinterval digunakan untuk data dalam jumlah besar tetapi pengulangannya sedikit. Adapun langkah-langkah membuat tabel frekuensi yang berinterval adalah sebagai berikut. Pertama, kamu harus menentukan data terkecil dan terbesarnya. Kedua, tentukan jangkauan datanya J. Jangkauan data merupakan hasil pengurangan data terbesar oleh data terkecil J = data terbesar – data terkecil. Ketiga, buatlah banyaknya kelas dengan aturan berikut. k = 1 + 3,322 log n, di mana n = ukuran sampel Keempat, tentukan interval kelas atau panjangnya kelas. Kelima, buat tabel distribusi frekuensi dengan metode turus. Lalu, bagaimana cara menghitung rata-rata untuk data berinterval? Tentuka nilai tengah dari masing-masing kelas, yaitu dengan membagi batas atas + batas bawah dengan 2. Menggunakan rumus rata-rata seperti sebelumnya. Dengan xi = nilai tengah kelas. Agar kamu lebih paham, yuk simak contoh soal berikut ini. Contoh Soal 2 Banyaknya pengunjung suatu wahana selama 60 hari ditunjukkan oleh data berikut. Tentukan rata-rata pengunjung wahana tersebut! Pembahasan Untuk menentukan rata-rata pengunjung selama 60 hari, sebenarnya kamu bisa menggunakan cara biasa, tetapi sangat melelahkan. Terbayang tidak jika banyaknya data Pasti waktumu habis hanya untuk mencari rata-ratanya saja. Cara paling mudah untuk menentukan rata-ratanya adalah dengan menggunakan tabel distribusi frekuensi. Ikuti langkah berikut. Tentukan nilai data terkecil dan terbesarnya Data terkecil = 60 Data terbesar = 115 Tentukan jangkauannya J = data terbesar – data terkecil = 115 – 60 = 55 Tentukan banyak kelasnya k = 1 + 3,322 log n = 1 + 3,322 log 60 = 6,9 Banyaknya kelas dibulatkan menjadi k = 7 kelas. Tentukan panjang kelas interval Panjang kelas dibulatkan menjadi 8. Membuat tabel distribusi frekuensi. Lalu, tentukan nilai tengah setiap kelas. Dengan demikian, rata-rata diperoleh seperti berikut. Rata-rata Jadi, rata-rata pengunjung wahana tersebut selama 60 hari adalah 90,83. 4. Rata-rata data gabungan Rata-rata data gabungan adalah rata-rata hasil dari dua kelompok data yang sudah memiliki rata-rata sebelumnya. Secara matematis, rata-rata data gabungan dinyatakan sebagai berikut. Agar kamu lebih paham tentang rata-rata data gabungan, simak contoh soal berikut ini. Contoh Soal 3 Nilai rata-rata Sejarah siswa laki-laki adalah 68 dan nilai rata-rata Sejarah siswa perempuan adalah 75. Jika rata-rata nilai gabungannya adalah 70, tentukan perbandingan banyaknya siswa laki-laki dan perempuan! Pembahasan Diketahui Ditanya nl np =…? Penyelesaian Secara matematis, rata-rata nilai gabungan dirumuskan sebagai berikut. Jadi, perbandingan jumlah siswa laki-laki dan perempuan adalah 5 2. Median Nilai Tengah Median atau nilai tengah adalah pemusatan data yang membagi suatu data menjadi setengah 50% data terkecil dan terbesarnya. Syarat utama untuk menentukan median adalah dengan mengurutkan data-data yang ada. 1. Median data tunggal Median pada data tunggal ditentukan dengan mengurutkan dahulu seluruh datanya, lalu gunakan persamaan berikut. Perhatikan contoh soal berikut. Contoh Soal 4 Tentukan media dari data 1, 2, 8, 11, 6, 10, dan 16! Pembahasan Urutan datanya 1, 2, 6, 8, 10, 11, 16 Banyaknya data = n = 7 Median Jadi, median data tersebut adalah 8. 2. Median data berinterval Secara matematis, median data berinterval dirumuskan sebagai berikut. Tb = tepi bawah kelas median – p; dan p = 0,5 jika nilai dinyatakan dalam bilangan bulat dan 0,05 jika nilai dinyatakan dalam bilangan desimal 1 angka di belakang koma. Untuk lebih jelasnya, simak contoh soal berikut. Contoh Soal 5 Tentukan median dari data tinggi badan siswa berikut ini. Pembahasan Pertama, tentukan dahulu banyak datanya. n = 6 + 8 + 10 + 5 + 4 + 3 = 36 Lalu, tentukan kelas median. Oleh karena datanya dinyatakan dalam bilangan bulat, maka tepi bawah kelas mediannya adalah sebagai berikut. Tb = 150 – 0,5 = 149,5 Dengan demikian, mediannya dirumuskan sebagai berikut. Jadi, median dari data tersebut adalah 151,5. Jika menurut Quipperian cara di atas terlalu panjang, gunakan SUPER “Solusi Quipper” berikut ini. Modus Nilai yang Paling Banyak Muncul Modus adalah ukuran pemusatan data yang berupa frekuensi terbesar munculnya data yang sama. Modus dibedakan menjadi dua, yaitu sebagai berikut. 1. Modus data tunggal Untuk memahami modus data tunggal, simak contoh berikut. 1, 2, 2, 2, 5, 6, 6, 7, 7, 7, 7, 10, 15 Modus data di atas adalah 7 karena 7 muncul sebanyak 4 kali. Bilangan selain 7 munculnya kurang dari 4 kali. Jika dalam suatu data terdapat dua modus, maka disebut bimodus. 2. Modus data berinterval Modus berinterval berlaku untuk data-data yang disajikan dalam bentuk interval. Secara matematis, modus berinterval dirumuskan sebagai berikut. Keterangan Tb = tepi bawah kelas modus; d1 = selisih frekuensi kelas modus dengan frekuensi kelas sebelumnya; d2 = selisih frekuensi kelas modus dengan frekuensi kelas setelahnya; dan l = panjang kelas. Agar kamu lebih paham dengan modus berinterval, simak contoh soal sebagai berikut. Contoh Soal 6 Perhatikan tabel data usia penduduk suatu RW berikut. Tentukan modus dari data di atas! Pembahasan Modus terletak pada kelas ke-7, sehingga Tb = 36 – 0,5 = 35,5 d1 = 24 – 16 = 8 d2 = 24 – 20 = 4 l = 6 – 0 = 6 Diperoleh Jadi, modus dari data tersebut adalah 39,5. Itulah pembahasan Quipper Blog tentang mean, median, dan modus. Cukup panjang sih, tapi semoga bermanfaat buat Quipperian. Jangan lupa untuk tetap belajar meskipun masih di rumah saja. Agar belajarmu semakin berwarna, kuy gabung dengan Quipper Video. Bersama Quipper Video, belajar jadi lebih mudah dan menyenangkan. Salam Quipper! Penulis Eka Viandari
Penjelasan ModusModus yakni data ataupun nilai yang sering muncul ataupun yang memiliki jumlah frekuensinya paling contohDATAMODUS2, 2, 2, 3, 4, 4, 5, 723, 4, 5, 5, 5, 6, 7, 7, 8, 8, 85 dan 82, 3, 5, 6, 9, 10Tidak adaNilai modus untuk data yang disajikan dalam distribusi frekuensi berkelompok tidak dapat tepat, tetapi hanya merupakan nilai untuk mencari modus dalam distribusi frekuensi berkelompok sebagai berikutMo = tb + [ d1 / d1+d2 ] cDengan tb = tepi bawah kelas medus d1 = selisih frekuensi kelas modus dengan kelas sebelumnya d2 = selisih frekuensi kelas modus dengan kelas sesudahnya c = panjang kelasModus dari data Kelompok dengan Tabel Distribusi FrekuensiTabel distribusi frekuensi juga merupakan data kelompok. Hanya saja, pada tabel ini nilai data dituliskan dalam range tertentu yang disebut interval atau modus data kelompokMo = Xi + [ fi / f1+f2 ] pKeterangan Mp = modusXi = tepi bawah kelas modusfi = frekuensi kelas modusf1 = selisih frekuensi kelas modus dengan kelas sebelumnyaf2 = selisih freuensi kelas modus dengan kelas sesudahnyaContoh menghitung data modus yang mudahPerhatikan dua contoh soal di bawah ini agar Anda paham dengan nilai modus adalah sejak tahapan Menghitung Modus dari data tinggi badan siswa 142 145 143 148 144 142 146 148 147 146 145JawabDalam data 142 disebutkan 2 kali, 143 = 1, 144 = 1, 145 = 2, 146 = 2, 147 = 1, dan 148 = 2Dari data diperoleh modusnya adalah tinggi badan yang dimiliki oleh 2 orang karena paling banyak 1 data hanya dituliskan dua data adalah 142, 14, 146, dan Modus dari data nilai matematika siswa kelas VI 10, 9, 8, 7, 8, 9, 8, 6, 6, 7, 9, 8, 7, 9, 10, 9, 8, 7, 7, 6, 7, 8, 9, 10, 9, 8, 6, 7, 9, 10Untuk data lebih dari 10 akan lebih mudah untuk diurutkan terlebih dahulu. Dengan demikian kamu akan dapat menentukan median sekaligus modus. Meskipun demikian, Anda hanya menghitung modusnya dahulu kali diurutkan menjadi6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10Dari data yang diurutkan dapat terlihat modusnya = 9. Artinya, berdasarkan nilai yang ada, siswa kelas VI dengan nilai 9 paling banyak nilai modus dari data angka berikut ini 5,6,7,6,7,8,7,8,9 ?JawabanLangkah awal yaitu kita urutkan datanya dari yang terkecil sampai yang 5,6,7,6,7,8,7,8,9 diurutkan menjadi 5,6,6,7,7,7,8,8,9Mencari Modus atau nilai yang paling sering muncul5,6,6,7,7,7,8,8,9Dari data diatas nilai yang paling banyak muncul adalah 7 jadi nilai modusnya adalah orang siswa-siswi memiliki nilai ujian sebagai berikut 77, 62, 72, 54, 76, 57, 81, 70. Tentukan modus nilai siswa!Jawaban Jika diurutkan, susunannya akan seperti berikut 57, 62, 70, 72, 76, 77, 81Dari pengamatan, tidak ada satupun nilai data yang sering muncul. Oleh karena itu, data di atas tidak memiliki orang siswa dijadikan sebagai sampel dan diukur tinggi badannya. Hasil pengukuran tinggi badan adalah sebagai berikut 172, 167, 180, 170, 169, 160, 175, 165, 173, 170. Tentukan modus tinggi badan siswa!Jawaban Untuk mengetahui modusnya dari data di atas, kita tidak menggunakan rumus apapun. Kita menentukan modusnya hanya melalui pengamatan hasil pengamatan, hanya nilai data 170 yang sering muncul, yaitu muncul dua kali. Sedangkan nilai data lainnya hanya muncul satu kali. Jadi modusnya data di atas adalah mempermudah pengamatan dalam mendapatkan modusnya, kita bisa juga mengurutkan data tersebut. Hasil pengurutan data adalah sebagai 165, 167, 169, 170, 170, 172, 173, 175, 180Dengan mudah kita peroleh modusnya yaitu modus berdasarkan tabel soal 1!PembahasanInterval modus adapada interval 70-79Tepi bawah, tb = 69,5Panjang kelas, c = 79,5 – 69,5 = 10Selisih frekuensi kelas modus dengan kelas sebelumnya, d1 = 14 – 18 = 6Selisih frekuensi kelas modus dengan kelas sesudahnya, d2 = 14 – 10 = 4d2 = 14 – 10 = 4Sehingga nilai modusnya adalahMo = tb + [ d1 / d1+d2 ] c = 69,5 + [ 6 / 6+4 ] 10 = 10 = 75,5Gambarkan data kelompok ini dalam bentuk tabel dan tentukan modusnya! 10, 9, 8, 7, 8, 9, 8, 6, 6, 7, 9, 8, 7, 9, 10, 9, 8, 7, 7, 6, 7, 8, 9, 10, 9, 8, 6, 7, 9, 10JawabanData setelah diurutkan6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10Masukkan data dalam tabel dengan memperhitungkan frekuensi banyaknya siswa yang memperoleh nilai Ulangan MatematikaJumlah siswa frekuensi64778798104Total30Modus data kelompok dalam tabel adalah 9 karena memperoleh frekuensi dengan nilai ulangan mata pelajaran Matematika yang didapat dari salah seorang murid selama 1 semester adalah 8, 7, 7, 7, 8, 8, 7, 7. Berapakah nilai modus dari data tunggal di atas?JawabanModus merupakan nilai yang paling sering muncul sehingga bisa diketahui jika nilai 7 merupakan nilai yang paling sering muncul, yaitu sebanyak 5 7, 7, 7, 7, 7, 8, 8, 8Tentukan pula modus dari data di bawah ini! Tabel Berat Badan SiswaBerat Badan kgJumlah Siswa frekuensi358369378387397406Total45JawabanModus dari data di atas adalah berat badan 36 kg karena mempunyai nilai frekuensi modus dari data pada tabel berikut! pada data kelas siswa-siswi sekolahNilaiFrekuensi11 – 20321 – 30531 – 401041 – 501151 – 608JawabanFrekuensi terbesar adalah 11 berada pada kelas 41-50, sehingga 41 – 50 disebut kelas modus dan diperolehXi = tepi bawah kelas modus = 41- 0,5 = 40,5fi = kelas modus = 11f1 = selisih kelas modus dengan kelas sebelumnya = 11 – 10 = 1f2 = selisih kelas modus dengan kelas setelahnya = 11 – 8 = 3p = panjang kelas = tepi atas kelas – tepi bawwah kelas = 50,5 – 40,5 = 10Mo = Xi + [ fi / f1+f2 ] p = 40,5 + 11/1+310 = 40,5 + 27,5 = 68Delapan buah sepeda motor sedang melaju di suatu jalan raya. Kecepatan kedelapan sepeda motor tersebut adalah sebagai berikut 60 , 80, 70, 50, 60, 70, 45, 75. Tentukan modus kecepatan sepeda motor!Jawaban Jika data diurutkan, maka hasilnya adalah sebagai 50, 60, 60, 70, 70, 75, 80Hasil pengamatan dari pengurutan di atas bisa diketahui nilai data 60 dan 70 adalah nilai data yang paling sering muncul masing-masing dua kali. Oleh karena itu modus sekelompok data di atas ada 2 adalah 60 dan LainnyaStatistika Matematika – Rumus, Contoh Soal dan JawabanNilai Pi 3,14 atau 22/7 atau 355/113 – Rumus dengan Pi – Contoh Soal dan JawabanFaktorial Matematika Beserta Contoh Soal dan JawabanTeorema Rolle Matematika Beserta Contoh Soal dan Jawaban KalkulusDeret Taylor Matematika dan Teorema Taylor Bersama Contoh Soal dan Jawaban KalkulusDeret Pangkat Matematika Beserta Contoh Soal dan Jawaban KalkulusRumus Limit Fungsi Matematika Kalkulus Beserta Contoh Soal dan JawabanFungsi Matematika Linear, Konstan, Identitas – Beserta Soal dan JawabanTopologi Matematika – Contoh Soal dan Jawaban Ruang TopologiRumus Matematika Keuangan – Contoh Soal dan JawabanInduksi Matematika Rumus, Pembuktian, Deret, Keterbagian, Pertidaksamaan, Soal, Pembahasan dan JawabanJenis dan Bidang-Bidang Matematika Besaran, Ruang, Perubahan, Struktur, Dasar dan Filsafat, Diskret, TerapanBerapa Kecerdasan IQ Anda? Tes IQ Anda DisiniBidang-Bidang Matematika Besaran, Ruang, Perubahan, Struktur, Dasar dan Filsafat, Diskret, Terapan10 Cara Belajar Pintar, Efektif, Cepat Dan Mudah Di Ingat – Untuk Ulangan & Ujian Pasti Sukses!Tulisan Menunjukkan Kepribadian Anda & Bagaimana Cara Anda Menulis?Penyakit yang dapat dicegah dengan vaksin – Wajib diketahuiTop 10 Sungai Terpanjang Di DuniaTempat Wisata Yang Wajib Dikunjungi Di Indonesia Dan Luar NegriKepalan Tangan Menandakan Karakter Anda & Kepalan nomer berapa yang Anda miliki?Bentuk Kaki Menandakan Karakter Anda – Bentuk Kaki nomer berapa yang Anda miliki?Unduh / Download Aplikasi HP Pinter PandaiRespons “Ohh begitu ya…” akan sering terdengar jika Anda memasang applikasi kita!Siapa bilang mau pintar harus bayar? Aplikasi Ilmu pengetahuan dan informasi yang membuat Anda menjadi lebih smart!HP AndroidHP iOS ApplePinter Pandai “Bersama-Sama Berbagi Ilmu” Quiz Matematika IPA Geografi & Sejarah Info Unik Lainnya Business & Marketing
modus dari data pada tabel adalah